
TOPIC : DEADLOCK AVOIDANCE

PRESENTATION BY

Mrs.D.Beulah

Assistant Professor

Aditya Degree College, Kkd.

Deadlock Avoidance

• To avoid deadlocks, we need to know more information
about how resources are to be requested.

• A deadlock avoidance algorithm dynamically examines the
resource allocation state.

• A state is safe if the system allocates resources to each
process in some order without deadlock.

• A system is in safe state if there exists a safe sequence.

Banker's Algorithm

Procedure :

• When a new process enters the system, it must declare the maximum

• number of instances of each resource type that it may need. This number

must not exceed the total number of resources in the system.

• When a user requests a set of resources, the system must determine

whether the allocation of these resources will leave the system in a safe

state. If it will, the resources are allocated else, the process must wait until

some other process releases enough resources.

Data structures: (n is the number of processes in the system and m is the number of resource types)

Available : A vector of length m indicates the number of available resources of each type.

If Available[j] equals k, then k instances of resource type Rj are available.

Max : An n x m matrix defines the maximum demand of each process.

If Max[i] [j] equals k, then process Pi may request at most k instances of

resource type Rj.

Allocation : An n x m matrix defines the number of resources of each type currently allocated to each
process. If Allocation[i][j] equals k, then process Pi is currently allocated k instances of resource type Rj.

Need : An n x m matrix indicates the remaining resource need of each process.

If Need[i][j] equals k, then process Pi may need k more instances of resource type Rj to complete its task.

Need[i][j] equals Max[i][j]- Allocation [i][j].

These data structures vary over time in both size and value.

