TOPIC : DEADLOCK AVOIDANCE

PRESENTATION BY

Mrs.D.Beulah Assistant Professor Aditya Degree College, Kkd.

Deadlock Avoidance

- To avoid deadlocks, we need to know more information about how resources are to be requested.
- A deadlock avoidance algorithm dynamically examines the resource allocation state.
- A state is safe if the system allocates resources to each process in some order without deadlock.
- A system is in safe state if there exists a safe sequence.

Banker's Algorithm

Procedure :

- When a new process enters the system, it must declare the maximum
- number of instances of each resource type that it may need. This number must not exceed the total number of resources in the system.
- When a user requests a set of resources, the system must determine whether the allocation of these resources will leave the system in a safe state. If it will, the resources are allocated else, the process must wait until some other process releases enough resources.

Data structures: (n is the number of processes in the system and m is the number of resource types)

Available : A vector of length m indicates the number of available resources of each type.

If Available[j] equals k, then k instances of resource type Rj are available.

Max : An n x m matrix defines the maximum demand of each process.

If Max[i] [j] equals k, then process Pi may request at most k instances of

resource type Rj.

Allocation : An n x m matrix defines the number of resources of each type currently allocated to each process. If Allocation[i][j] equals k, then process Pi is currently allocated k instances of resource type Rj.

Need : An n x m matrix indicates the remaining resource need of each process.

If Need[i][j] equals k, then process Pi may need k more instances of resource type Rj to complete its task.

Need[i][j] equals Max[i][j]-Allocation [i][j].

These data structures vary over time in both size and value.

- 5 processes P0, P1, P2, P3 & P4.
- 3 resource types A, B & C.
 - A 10 instances
 - B 5 instances
 - C 7 instances
- Initially,

	1	Alla	llocation			Max		
		A	B	С	A	В	C	
F	. ()	1	0	7	5	3	
F	2	2	0	0	3	2	2	
F	3	3	0	2	9	0	2	
F	2,	2	1	1	2	2	2	
F	24	٥	0	2	4	3	3	

om this, w	/e ca	n tine	d nee	d matrix
/eed[/][/] =	Max	00	- Alloc	ation[j][j].
		1200		
	A	B	С	
PO	7	4	3	
PI	T	2	2	
P2	6	0	0	
		a	1	
P3	U			